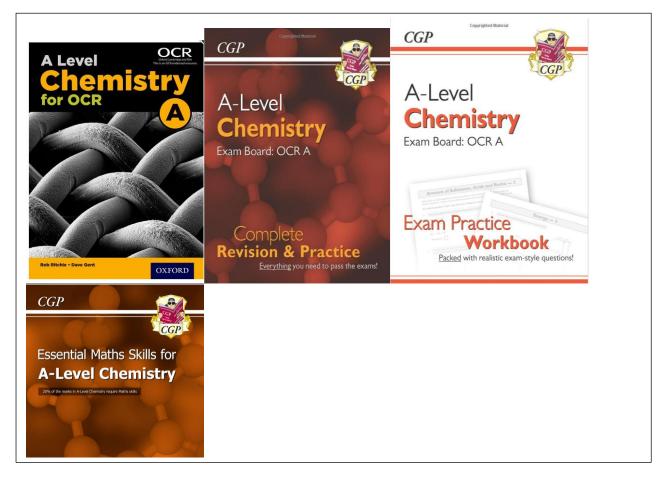
A level Chemistry Pre-Induction Activity

Welcome to A-level Chemistry at the sixth form Bolton.

OCR Chemistry - Chemistry A H432

Specification

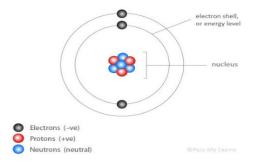

https://www.ocr.org.uk/Images/171720-specification-accredited-a-level-gce-chemistry-a-h432.pdf

Tool Kit

Pen, Pencil, ruler, scientific calculator, lever arch folder.

Recommended books and workbooks

The chemistry department will provide printed booklets and question packs for all students which cover the entire course to A* standard, however for additional reference please see below.


Induction Task – perfection of GCSE skills

In order to get you fully prepared for A-Level Chemistry, you must complete this task.

Your work should be handed in at your first Chemistry lesson or can be uploaded in advance of the first day of teaching.

Part 1: Atomic structure

Need help in parts 1 and 2? https://tinyurl.com/y4bdmsgz

What you know from GCSE:

- Electrons orbit the nucleus in energy levels (called shells)
- The first level can hold a maximum of 2 electrons, the second can hold 8 and the third can hold a maximum of 8.

	tilla dan nola a maximum or o.
Q1. D	raw a diagram to show the electron arrangement of the following elements-
a.	Carbon
b.	Fluorine
C.	Magnesium
d.	Sulphur
e.	Argon

Part 2: The periodic table

The periodic table gives you two numbers:

Atomic number = It is also called the proton number as it gives the number of protons in the nucleus.

The Periodic Table of the Elements

• Relative atomic mass = A_r . This gives you an average mass of all the isotopes

(1) (2) (7) (0) (4) (5) (6) Key atomic number Symbol He relative atomic mass 4.0 4 Be Ne 16.0 6.9 9.0 10.8 12.0 14.0 19.0 20.2 13 **A***l* 14 Si 18 **Ar** Mg 24.3 aluminium 27.0 31.0 32.1 35.5 39.9 23.0 28.1 20 **Ca** 27 Co 34 **Se** 36 **K**r 26 **Fe** 29 **Cu** 31 **Ga** 32 **Ge** 22 **Ti** 24 Cr 25 Mn 28 **Ni** 30 **Zn** As arsenic 74.9 79.9 40.1 45.0 47.9 50.9 52.0 54.9 58.9 58.7 63.5 69.7 72.6 79.0 83.8 39.1 37 **Rb** 44 Ru 46 **Pd** 48 **Cd** 52 **Te** 54 **Xe** Ag 101.1 112.4 118.7 127.6 131.3 55 **Cs** 84 **Po** 72 **Hf** 74 **W** 78 **Pt** 81 **T**1 Ta Os Ir Bi At astatine Ва Au Hg Pb Rn 197.0 132.9 137.3 178.5 180.9 183.8 186.2 190.2 192.2 195.1 200.6 204.4 207.2 209.0 114 F*l* 89-103

Q2. The periodic table is the way of arranging the chemical elements in order of

- Q3. What does the group number indicate?
- Q4. What does the period number indicate?
- Q5. What is meant by isotopes?

increasing _

Individual isotopes of an element have a mass number:

• The mass number gives the total number of neutrons + protons. This cannot be found on the periodic table.

Q6. Copy and Complete the table for individual isotopes of some elements :

Element	Symbol	Z	Α	No. protons	No. neutrons	No. electrons
sodium			23			
		6	12			
		12			12	
		84	210			
chlorine		17	35			
chlorine		17	37			

Part 3: Molecular formulae and Relative formula mass (Mr)

Compounds (and some elements, such as O_2) are formed when more than one atoms bonds together. These compounds or elements have a chemical formula.

Formulae tell you the number of each type of atom that are present in a compound.

Q7. How many of each type of atom are in: a. BaCl ₂	
b. K ₂ O	
c. Ag ₂ SO ₄ ,	
d. Mg(NO ₃) ₂	
e. (NH4)3PO4	

Relative formula mass (or relative molecular mass) tells you the relative mass of a compound or element. It is worked out by adding together the A_r , or relative atomic mass, of all atoms of a compound.

• Use A_r and NOT mass number.

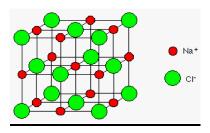
Q8 Work out the Mr of each of the compounds

- a. BaCl₂
- b. K₂O
- c. Ag₂SO₄
- d. $Mg(NO_3)_2$
- e. (NH4)3PO4

Part 4:Balancing Equations

Q9

You will be asked to balance various equations in A level Chemistry Balance the following symbol equations


Part 5:Chemical formulas

Q10 What is the chemical formula of

- a. Sulphuric acid
- b. Nitric acid
- c. Hydrochloric acid
- d. Phopshoric acid

Part 6: Bonding

lonic structures

Q11-How is an ionic bond formed?

Q12-Draw a dot cross diagram showing the ionic bonding in

- a. Sodium Chloride -NaCl
- b. Calcium Chloride -CaCl₂
- c. Calcium Oxide-CaO

Covalent bonding

Q13-How is a covalent bond formed?
14) Draw a dot cross diagram to represent covalent bonding for: a. Methane-CH ₄
b. Oxygen-O ₂
c. Carbon dioxide-CO ₂

Giant covalent/covalent macromolecules

- Giant covalent structures are huge lattices of atoms attached together by covalent bonds.
- Examples of giant covalent are diamond, silicon and graphite
- These types of structures have very large melting points because you need to break lots of strong covalent bonds.

Simple molecules

- Most covalent structures make simple molecules
- When you melt a simple molecular structure, the covalent bonds stay in place, but forces between the simple molecules, called 'intermolecular forces' break.
- Intermolecular forces are weak, so the melting points are low.

15. Complete the table by adding the type of structure:

	Melting Point °C (high or low)	Boiling Point °C (high or low)	lonic, giant covalent or simple molecule?
Diamond			
Methane			
Water			
Barium oxide			